Sensing Dictionary Construction for Orthogonal Matching Pursuit Algorithm in Compressive Sensing Sensing Dictionary Construction for Orthogonal Matching Pursuit Algorithm in Compressive Sensing
نویسنده
چکیده
In compressive sensing, the fundamental problem is to reconstruct sparse signal from its nonadaptive insufficient linear measurement. Besides sparse signal reconstruction algorithms, measurement matrix or measurement dictionary plays an important part in sparse signal recovery. Orthogonal Matching Pursuit (OMP) algorithm, which is widely used in compressive sensing, is especially affected by measurement dictionary. Measurement dictionary with small restricted isometry constant or coherence could improve the performance of OMP algorithm. Based on measurement dictionary, sensing dictionary can be constructed and can be incorporated into OMP algorithm. In this thesis, two methods are proposed to design sensing dictionary. In the first method, sensing dictionary design problem is formulated as a linear programming problem. The solution is unique and can be obtained by standard linear programming method such as primal-dual interior point method. The major drawback of linear programming based method is its high computational complexity. The second method is termed sensing dictionary designing algorithm. In this algorithm, each atom of sensing dictionary is designed independently to reduce the maximal magnitude of its inner product with measurement dictionary. Compared with linear programming based method, the proposed sensing dictionary design algorithm is of low computational complexity and the performance is similar. Simulation results iv indicate that both of linear programming based method and the proposed sensing dictionary designing algorithm can design sensing dictionary with small mutual coherence and cumulative coherence. When the designed sensing dictionary is applied to OMP algorithm, the performance of OMP algorithm improves.
منابع مشابه
Probabilistic Matching Pursuit for Compressive Sensing
Compressive sensing investigates the recovery of a signal that can be sparsely represented in an orthonormal basis or overcomplete dictionary given a small number of linear combinations of the signal. We present a novel matching pursuit algorithm that uses the measurements to probabilistically select a subset of bases that is likely to contain the true bases constituting the signal. The algorit...
متن کاملA Modified Regularized Adaptive Matching Pursuit Algorithm for Linear Frequency Modulated Signal Detection Based on Compressive Sensing
Compressive Sensing (CS) is a novel signal sampling theory under the condition that the signal is sparse or compressible. It has the ability of compressing a signal during the process of sampling. Reconstruction algorithm is one of the key parts in compressive sensing. We propose a novel iterative greedy algorithm for reconstructing sparse signals, called Modified Regularized Adaptive Matching ...
متن کاملImage Compression Based on Compressive Sensing Using Wavelet Lifting Scheme
Many algorithms have been developed to find sparse representation over redundant dictionaries or transform. This paper presents a novel method on compressive sensing (CS)-based image compression using sparse basis on CDF9/7 wavelet transform. The measurement matrix is applied to the three levels of wavelet transform coefficients of the input image for compressive sampling. We have used three di...
متن کاملComparison of threshold-based algorithms for sparse signal recovery
Intensively growing approach in signal processing and acquisition, the Compressive Sensing approach, allows sparse signals to be recovered from small number of randomly acquired signal coefficients. This paper analyses some of the commonly used threshold-based algorithms for sparse signal reconstruction. Signals satisfy the conditions required by the Compressive Sensing theory. The Orthogonal M...
متن کاملMicrosoft Word - Huang et al pdf
The modified orthogonal matching pursuit (OMP) algorithm based on sensing dictionary, shows significant improvement for the performance of sparse recovery, especially in the case of highly coherent dictionary. Assuming a signal to be decomposed, a good sensing dictionary should depend not only on the ordinary dictionary but also the observed data. In this paper, a re-weighted algorithm for desi...
متن کامل